MATH $2050C$ Lecture 15 (Mar 10) Problem Set 8 posted, due on Mar 18. G_{OAL} : define $\lim_{x\to c} f(x)$ where $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and C is a cluster pt of A Recall: $C \in \mathbb{R}$ is cluster pt. of $A \subseteq \mathbb{R}$ $\langle z \rangle$ \forall δ $>$ \circ , \exists $\chi \in A$ s.t. $\chi \neq C$ and $|\chi - C| < \delta$ \leq \exists seq. (an) in A st. ant c \forall n \in N and $lim (an) = c$ Caution: CEA OR CEA. $Def.$ ": Let $f: A \subseteq R \rightarrow R$ be a function. Suppose C E IR is a cluster point of A. We say that " f converges to LER at c' denoted: Lim $f(x) = \bigcup_{x \in \mathcal{X}} O(x)$ $f(x) \neq \bigcup_{x \in \mathcal{X}} O(x)$ $x \rightarrow c$ iff $V \Sigma$ o. $\exists S = S(\epsilon)$ o st. $(ie, X \neq C)$ $|f(x) - L| < \epsilon$ \forall $x \in A$ at ocl $x - c$ ic s nm defined

Example 1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ where (i.e. $A = \mathbb{R}$)		
$f(x) := x$	$\forall x \in \mathbb{R}$	
Show that $\boxed{\lim_{x \to c} f(x) = c}$	$\forall c \in \mathbb{R}$.	
Proof:	Observe: Any $c \in \mathbb{R}$ is a cluster $\mathbb{R} + A = \mathbb{R}$	
Fix $c \in \mathbb{R}$. Let ξ so be fixed but arbitrary.		
Choose ξ > 0	st	$\xi = \xi$.
THEN, $\forall x \in A = \mathbb{R}$, $\circ < x - c < \xi$, we have		
$\int f(x) - c$	$= x - c < \xi = \xi$	
Example 2: $\lim_{x \to c} x^2 = c^2$ is $\lim_{x \to c} f : A = \mathbb{R} \to \mathbb{R}$		
Pf:	Fix $c \in \mathbb{R}$. Let ξ so be fixed but arbitrary.	
$\frac{\alpha}{\alpha} : \lim_{x \to \infty} f \circ \cos \alpha \le \delta$		
$\frac{\alpha}{\alpha} : \lim_{x \to \infty} f \circ \cos \alpha \le \delta$		
$\frac{\alpha}{\alpha} : \lim_{x \to \infty} f \circ \cos \alpha \le \delta$		
$\frac{\alpha}{\alpha} : \lim_{x \to \infty} f \circ \cos \alpha \le \delta$		
$\frac{\alpha}{\alpha} : \lim_{x \to \infty} f \circ \cos \alpha \le \delta$		
$\frac{\alpha}{\alpha} : \lim_{x \to \infty} f \circ$		

Suppose
$$
|x-c| \le 1
$$
, then $\frac{f_{\text{pred}}}{\sqrt{x+c} \le |x-c| + 2|c|} \le 4 + 2|c|$
\n $|x+c| \le |x-c| + 2|c| \le 4 + 2|c|$
\nChosse $S := \min\{1, \frac{\epsilon}{1+2|c|}\}$
\nTHEN, $\forall x \in \theta \in \mathbb{R}, 0 \le |x-c| \le \delta$, we have
\n $|f(x) - c^2| = |x^2 - c^2| = |x+c| \cdot |x-c|$
\n $\le (1+2|c|) \le 6 \le 6$
\n $\le (1+2|c|) \le \frac{1}{2} \le \frac{1}{\sqrt{2}}$ where $c \ne 0$.
\n
\n $\frac{\text{Next: } f: A = \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}}{\text{X} \cdot \sqrt{x}} = \frac{1}{\sqrt{x}}$
\nany $C \in \mathbb{R}$ is a cluster pt of A.
\n
\n $\frac{\text{Pf}}{\text{Pf}}$: Fix $C \ne 0$. Let $\{30, 9e$ fixed but arbitrary.

$$
\left|\frac{1}{x} - \frac{1}{c}\right| = \left|\frac{x - c}{x - c}\right| = \frac{1}{|x|} \left|\frac{1}{c} - \frac{1}{c}\right|
$$

$$
\leq \frac{2}{|c|} \cdot \frac{1}{|c|} \cdot \frac{1}{c} \leq \frac{1}{c}
$$

